理系にゅーす

このブログは宇宙、生物、科学、医学、技術など理系に特化したブログです! 理系に関する情報をネット上からまとめてご紹介します。

スポンサーリンク

デバイス

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
~~引用ここから~~

1: ししゃも2人前 ★@\(^o^)/ 2014/05/22(木) 23:27:52.51 ID:???.net
「量子コンパス」(Quantum Compass)という技術をご存じだろうか?

位置情報システムとしては人工衛星を使った「GPS」(Global Positioning System)がメジャーな存在であり、現在スマートフォンなどで利用されているA-GPSは、この衛星システムに地上の携帯アンテナやWi-Fi情報を加えて位置特定速度や精度を向上させたものだ。

一方で量子コンパスは、こうした固定のアンテナや衛星等に頼らず、地磁気等の情報のみを取得してデバイス単体で位置を特定できるメリットがある。


GPS以外の位置情報特定システムが求められる背景

最近では位置情報システムというと、ごく自然に「GPS」というキーワードが出てくるが、GPS自体はアメリカ合衆国が運用するシステムであり、これを多くの機器がそのまま利用しているに過ぎない。

地表における詳細な位置を特定するというのは航空機や船舶の運航、情報収集において非常に大きな意味を持っており、GPSももともとは軍事目的として30?40年ほど前から研究や配備が続けられてきたものだ。

現在のGPSも、その過程で打ち上げられた衛星の一部がそのまま運用されてきたもので、準同期軌道という静止軌道より低い軌道を約30個の衛星が周回して地上全土をカバーしている。

GPS受信器は、現在位置からこの衛星のいくつかが出している信号をキャッチし、誤差計算を加えた上で正確な位置を割り出している。

だが、元が軍事用途を中心としたものであり、GPSが現在の形で開放されたのはここ15年ほどのことだ。
以前までは「Selective Availability」という仕組みがあり、軍事用途では誤差数メートルほどの正確な位置情報が取得できるようになっている一方で、一般にはこれにダミー情報を加えて範囲100mほどの誤差まで落とした情報を提供するようにしていた。

これが、1996年にビル・クリントン大統領(当時)によって「デュアルユース」という一般開放に向けた指針が示され、2000年5月の段階でようやく「Selective Availability」が解除され、今日のGPSの形で利用できるようになった。
今日、GPS技術は進化を続け、スマートフォンのような小型デバイスであってもごく一般的に搭載されるようになったのも、デュアルユースによる解放後の技術開発があったからだといえる。

続きはソースで


イギリス国立物理学研究所(The National Physical Laboratory、NPL) によるプレスリリース
http://ascii.jp/elem/000/000/896/896789/001_248x.jpg
NPLによる観測用チップ
http://ascii.jp/elem/000/000/896/896790/002_248x.jpg


ASCII.jp
http://ascii.jp/elem/000/000/896/896793/


引用元: 【新技術】「量子コンパス」はGPSを置き換えるか?プロトタ イプが3~5年で登場?[5/22]

「量子コンパス」はGPSを置き換えるか?プロトタ イプが3~5年で登場?[5/22]の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 白夜φ ★ 2014/02/12(水) 23:22:22.52 ID:???
液晶の電場配向に対する閉じ込め効果を初観測-空間の狭さで液晶の特性が変わるメカニズムを解明-
2014年2月10日 09:00

東北大学原子分子材料科学高等研究機構の栗原和枝教授の研究グループは、独自に開発した共振ずり測定法を駆使し、基板の間の距離約13 nm以下の空間に閉じ込められた液晶は、電場により分子の向きを変えることが出来なくなることを見いだしました。 

液晶ディスプレーは、2枚の基板が液晶分子を挟んでできた素子から構成されており、一定方向に並んでいる(配向している)液晶分子の向きを、電場を用いて変えることで表示を制御しています。
本研究グループでは、基板表面間の距離を連続的に変えながら表面間の液体の特性を高感度に調べることができる共振ずり測定法を独自に開発し、表面間距離をナノメートルレベルで変えながら液晶の配向、およびその電場に対する応答の評価を行いました。

その結果、表面からの距離、或いは表面間の距離がある臨界値以下になると、電場などの外場により分子の向きを制御できなくなることを初めて示しました。
今回の研究成果は、基礎科学としては“閉じ込め効果(固体壁により分子の動きが制限される効果)”の理解につながると期待され、応用面ではディスプレーなどの液晶デバイスの微細化の限界を知る上で非常に重要な成果と言えます。

本研究は、2014年2月7日(英国時間)に英科学誌「Soft Matter」オンライン版に掲載されます。

17

▽記事引用元 東北大学プレスリリース 2014年2月10日 09:00
http://www.tohoku.ac.jp/japanese/2014/02/press20140207-02.html

詳細(プレスリリース本文)
http://www.tohoku.ac.jp/japanese/newimg/pressimg/tohokuuniv-press_20140207_02web.pdf

液晶の電場配向に対する閉じ込め効果を初観測 空間の狭さで液晶の特性が変わるメカニズムを解明/東北大の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: ハーフネルソンスープレックス(大阪府) 2014/02/25(火) 16:34:18.77 ID:prk2QxYP0 BE:165625632-PLT(12001) ポイント特典
2014年2月24日、サンディスクがmicroSDXCカード「Ultra microSDXC UHS-I」の世界最大容量の128GBモデルを発表しました。スマートフォンやタブレットに挿入でき、カード1枚で16時間のフルHDムービー、7500曲、3200枚の写真、125以上のアプリケーションを保存することが可能です。

サンディスクは世界最大容量のmicroSDXCカード「Ultra microSDXC UHS-I 128GB」を発表。2004年に初めて128MBのmicroSDカードが発売されてから、わずか10年未満で容量は1000倍に達しました。

Android搭載スマートフォン・タブレット向けに設計され、通常のmicroSDカードに比べて2倍の最大30MB/秒の転送速度を実現。SDスピードクラスはCLASS 10をサポートしており、フルHDムービー録画にも対応。
ポータブルデバイス上の全てのデータを1つにまとめて保存することが可能で、Google PlayでAndroidアプリ「SanDisk Memory Zone」の新バージョンを使えば、データの閲覧・アクセス・バックアップ・保存などをさらに手軽に行うことができます。

Strategy Analyticsのディレクターであるスチュアート・ロビンソン氏は「これまでデバイスのメモリは十分な容量を持てず、多数のデバイスやクラウドにデータを分散する必要がありました。
128GBの容量を持つ『SanDisk Ultra microSDXC』は、素早くアクセス可能なデータ・アーカイブとして、消費者とデバイスの関係を作り変えるでしょう」と話しています。

なお、「Ultra microSDXC UHS-I 128GB」は199ドル99セント(約2万500円)で販売される予定です。


14
http://gigazine.net/news/20140225-highest-storage-microsdxc/

microSD、ついに128GBモデル登場 サンディスクが約2万円で発売予定の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: ◆SWAKITI9Dbwp @すわきちφφ ★ 2014/01/30(木) 10:55:49.27 ID:???
ダイヤモンドを用いて量子コンピュータの実現に不可欠な量子エラー訂正に成功
~量子情報デバイスの実用化・量子コンピューティングの実現に前進~

平成26年1月30日

国立大学法人 筑波大学
独立行政法人 日本原子力研究開発機構
独立行政法人 科学技術振興機構

ポイント
○室温での固体量子ビットの量子エラー訂正に世界で初めて成功
○量子コンピュータに必須の「エラー訂正」をしながら計算というエラー耐性を多量子ビットへ拡張可能
○実用的な固体量子情報デバイス開発への道を開く

量子情報は、環境からのノイズによってたやすく壊されてしまうため、量子エラー訂正なしには量子コンピューティングは実現しないと言われてきました。

国立大学法人 筑波大学(以下「筑波大学」という)磯谷 順一 名誉教授(筑波大学 知的コミュニティ基盤研究センター 前主幹研究員)、独立行政法人 日本原子力研究開発機構(以下「JAEA」という)量子ビーム応用研究部門 半導体耐放射線性研究グループ 大島 武 リーダーらは、ドイツとの共同研究により、室温での固体量子ビットの量子エラー訂正に世界で初めて成功しました。

ダイヤモンド中のカラーセンター注1)の1つであるNVセンター注2)の単一欠陥(単一分子に相当)を用いて、電子スピン注3)1個と核スピン3個からなるハイブリッド量子レジスタを作成しました。
これを用いて、室温動作の固体スピン量子ビットでは世界で初めて、量子エラー訂正のプロトコルの実証に成功したものです。
これは、量子情報デバイス、量子コンピューティングに必須の量子エラー訂正における大きなブレークスルーです。
この成果により、量子中継器など、実用的な固体量子情報デバイス開発、量子コンピュータの実現に向けて大きく前進しました。

本研究は科学技術振興機構(JST) 国際科学技術共同研究推進事業(戦略的国際共同研究プログラム)日独共同研究(ナノエレクトロニクス)「ダイヤモンドの同位体エンジニアリングによる量子コンピューティング」(日本側研究代表者:磯谷 順一 筑波大学 名誉教授、ドイツ側研究代表者:ウルム大学 Fedor Jelezko 教授)の一環として行われました。
本研究成果は「NATURE誌」2014年1月29付け掲載されます。

(詳細はリンク先をご覧ください)

JSTプレスリリース
http://www.jst.go.jp/pr/announce/20140130/index.html

【画像1】
http://www.jst.go.jp/pr/announce/20140130/icons/zu1.gif
図1 ダイヤモンド中のNVセンターの構造とエネルギー準位
NVセンターは、炭素を置換した窒素と隣接する格子位置の原子空孔とのペアーで電荷-1、電子スピンS=1をもちます。

有機色素なみに光を強く吸収し、赤色の蛍光を強く発光しますので、励起レーザー光(緑色)の焦点を小さなスポット(径~300nm)に絞り、その位置からの蛍光のみを観測できる共焦点顕微鏡を用いると室温で単一欠陥を観測することができます。
蛍光強度がスピン副準位(Ms=0,±1)に依存することを用いて、単一欠陥の単一電子スピンについてMs=0であるかMs=±1であるかを読み出すことができます。
光をあてることにより、室温でMs=0の状態にすることができます(光による初期化)。

【画像2】
http://www.jst.go.jp/pr/announce/20140130/icons/zu2.jpg
図2 ダイヤモンドの電子線照射・熱処理によるNVセンター作製
写真は住友電工が合成した天然存在比の結晶。

【画像3】
http://www.jst.go.jp/pr/announce/20140130/icons/zu3.gif
図3 ダイヤモンド中のNVセンターを用いた量子情報保持時間の長い核スピンと高速な量子操作・光による読み出しが可能な電子スピンを組み合わせたハイブリッド量子レジスタ電子スピンの初期化やスピンの読み出しには光を用います(蛍光の捕集効率を高めるためにソリッド・イマージョンレンズを用いました)。

核スピンの初期化には電子スピンとのSWAPゲートを用い、シングル・ショット読み出しで確認します。
スピンの量子操作には、周波数を選んだ(あるいは異なる周波数を組み合わせた)マイクロ波パルス、ラジオ波パルスをダイヤモンド表面に作成したコプレナー導波路を用いて外から加えます。
ハイブリッド量子レジスタはサブナノスケールの大きさです。高磁場(~620mT)を用いました。
Nature
http://www.nature.com/nature/journal/vaop/ncurrent/full/nature12919.html
8

ダイヤモンドを用いて量子コンピュータの実現に不可欠な量子エラー訂正に成功…筑波大学などの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: リキラリアット(WiMAX) 2014/01/19(日) 12:06:35.89 ID:C+cKiEsB0 BE:4619463269-PLT(12001) ポイント特典
東北大学は、グラフェンを用いたデバイスの動作時における、相対論的量子力学に起因して発現する多体効果のナノスケール制御に成功したと発表した。

同成果は、同大 電気通信研究所の吹留博一准教授らによるもの。高輝度光科学研究センター、東京大学大学院工学研究科、東北大学 学際科学フロンティア研究所と共同で行われた。詳細は、「Scientific Reports」に掲載された。

蜂の巣状に配列した炭素原子からなるグラフェンは、直線的なバンド構造を有しており、グラフェン中の荷電キャリアは、シリコンなどのデバイス材料が従う量子力学ではなく、相対論的量子力学に従い、シリコンの100倍以上のキャリア移動度を有するなど、優れた電子・光物性を持っている。しかし、グラフェンを用いたデバイス、例えば、トランジスタの特性は、その理論値から予想される値を下回っている。

その大きな理由の1つとして、デバイスプロセスの未成熟さが挙げられる。さらに、もう1つの理由として、多体効果が挙げられる。

多体効果とは、多くの素粒子(電子・正孔など)間に働く相互作用を指す。その一例として、クーロン力により束縛された電子-正孔対(励起子)に働く相互作用(励起子効果)が挙げられる。多体効果は、グラフェン中のキャリアが相対論的量子力学に従うために顕著となる。
このことから、多体効果を無視した場合には一直線となるバンド構造に、多体効果に起因した折れ曲がりなどが生じ得ることになる。
このため、グラフェンの優れた物性、例えば、キャリア移動度は、多体効果により変調を受ける可能性がある。多体効果はグラフェンを用いた光デバイスや高速電子デバイスの特性を変化させると予想される。

【画像】
http://news.mynavi.jp/news/2014/01/17/350/images/001l.jpg
グラフェンの直線的なバンド分散構造

http://news.mynavi.jp/news/2014/01/17/350/index.html

(続く)
10

東北大、グラフェンデバイス動作時に相対論的量子力学に起因し発現する多体効果のナノスケール制御に成功の続きを読む
スポンサーリンク

このページのトップヘ