理系にゅーす

このブログは宇宙、生物、科学、医学、技術など理系に特化したブログです! 理系に関する情報をネット上からまとめてご紹介します。

スポンサーリンク

トランジスタ

    このエントリーをはてなブックマークに追加 mixiチェック
1: 伊勢うどんφ ★ 2014/01/17(金) 09:17:08.79 ID:???
 富士通研究所(川崎市中原区、富田達夫社長、044・754・2613)は、富士通製のスーパーコンピューター「FX10」を利用し、従来比3倍となる約3000原子のナノ素子を使った電気特性シミュレーションに成功した。
次世代のグラフェン(炭素原子のシート)トランジスタ素子を想定。
計算精度を保ちながら従来比25分の1の約20時間で電気特性を予測できた。
3年後をめどに1素子当たり1万原子数での電気特性模擬実験を実証し、スパコン上でナノ素子設計の実現を目指す。

 電気特性の模擬実験では、スパコン上でグラフェントランジスタ素子をつくり、素子の電極に電圧をかけて電流(電子)の流れる状態を予測計算する。
今回、スパコンで使うメモリー量を削減する手法や、一般公開されている原理計算プログラムなどを組み合わせて模擬実験を実施。
この結果、素子のチャネル(電子の通り道)と絶縁膜を含めた約3000原子数の計算に成功した。

 これにより、スパコン上で約3000原子数のナノ素子について、構造設計などから同模擬実験にいたるまで1週間程度で実証できるというこれまで同模擬実験ではトランジスタ素子のチャネル部分だけに相当する1000原子数しか予測計算できなかった。
今回の実証により、他の半導体材料を使ったナノ素子設計への模擬実験も可能になるとしている。

8

日刊工業新聞 2014年01月14日
http://www.nikkan.co.jp/news/nkx0220140114aaaf.html


プレスリリース
http://pr.fujitsu.com/jp/news/2014/01/14.html

First-principles electronic transport calculations of graphene nanoribbons on SiO2/Si
http://apex.jsap.jp/link?APEX/7/025101/

3000原子のナノ素子使用した電気特性模擬実験に成功、富士通研の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: リキラリアット(WiMAX) 2014/01/19(日) 12:06:35.89 ID:C+cKiEsB0 BE:4619463269-PLT(12001) ポイント特典
東北大学は、グラフェンを用いたデバイスの動作時における、相対論的量子力学に起因して発現する多体効果のナノスケール制御に成功したと発表した。

同成果は、同大 電気通信研究所の吹留博一准教授らによるもの。高輝度光科学研究センター、東京大学大学院工学研究科、東北大学 学際科学フロンティア研究所と共同で行われた。詳細は、「Scientific Reports」に掲載された。

蜂の巣状に配列した炭素原子からなるグラフェンは、直線的なバンド構造を有しており、グラフェン中の荷電キャリアは、シリコンなどのデバイス材料が従う量子力学ではなく、相対論的量子力学に従い、シリコンの100倍以上のキャリア移動度を有するなど、優れた電子・光物性を持っている。しかし、グラフェンを用いたデバイス、例えば、トランジスタの特性は、その理論値から予想される値を下回っている。

その大きな理由の1つとして、デバイスプロセスの未成熟さが挙げられる。さらに、もう1つの理由として、多体効果が挙げられる。

多体効果とは、多くの素粒子(電子・正孔など)間に働く相互作用を指す。その一例として、クーロン力により束縛された電子-正孔対(励起子)に働く相互作用(励起子効果)が挙げられる。多体効果は、グラフェン中のキャリアが相対論的量子力学に従うために顕著となる。
このことから、多体効果を無視した場合には一直線となるバンド構造に、多体効果に起因した折れ曲がりなどが生じ得ることになる。
このため、グラフェンの優れた物性、例えば、キャリア移動度は、多体効果により変調を受ける可能性がある。多体効果はグラフェンを用いた光デバイスや高速電子デバイスの特性を変化させると予想される。

【画像】
http://news.mynavi.jp/news/2014/01/17/350/images/001l.jpg
グラフェンの直線的なバンド分散構造

http://news.mynavi.jp/news/2014/01/17/350/index.html

(続く)
10

東北大、グラフェンデバイス動作時に相対論的量子力学に起因し発現する多体効果のナノスケール制御に成功の続きを読む
スポンサーリンク

このページのトップヘ