理系にゅーす

このブログは宇宙、生物、科学、医学、技術など理系に特化したブログです! 理系に関する情報をネット上からまとめてご紹介します。

スポンサーリンク

メカニズム

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 白夜φ ★ 2014/02/13(木) 00:55:48.46 ID:???
トピックス 2014.02.12
【研究発表】言語の文法処理を支える3つの神経回路を発見

ポイント
・脳腫瘍の部位により異なる言語障害が生じことを発見した 。
・左右の大脳と小脳を含む広範な神経回路が 、言語 の文法を支えていることを明らかにした 。
・言語 の核心的な神経 回路を解明 したことで 、言語 障害 の治療とリハビリに役立つ可能性 。


JST 課題達成型基礎研究の一環として、東京大学大学院総合文化研究科の酒井邦嘉教授らは、言語の文法処理を支える3つの神経回路を初めて発見し、言語障害の1つ である文法障害注1)に伴う脳活動の変化を解明しました。

従来は人間の言語を支える脳の仕組みは、左脳の言語中枢しか知られておらず、言語障害が生ずるメカニズムは良く分かっていませんでした。

本研究グループは、左前頭葉に脳腫瘍がある患者の脳の構造と機能について、MRI 装置注2)と日本語の文法能力テストで詳細に調べることで、脳腫瘍の部位により異なるタ イプの言語障害(特に文法障害)が生じることを明らかにしました。
また、言語の文法処理を支える神経回路が3つ存在し、大脳の左右半球と小脳を含む広範なネットワーク を形成するということを初めて明らかにしました。

本成果は、言語障害の治療とリハビリの改善に役立つことが期待されます。

本研究は昭和大学横浜市北部病院の金野竜太 講師、東京女子医科大学先端生命医 科学研究所の村垣善浩教授らと共同で行われ、本研究成果は、平成26年2月11日(英国時間)に英国科学誌「Brain」のオンライン速報版で公開されます。

<--------引用ここまで 全文は記事引用元をご覧下さい ----------->

ダウンロード (1)

▽記事引用元 東京大学 2014.02.12
http://www.c.u-tokyo.ac.jp/info/news/topics/20140212030000.html

▽関連リンク
Brain
Differential reorganization of three syntax-related networks induced by a left frontal glioma
http://brain.oxfordjournals.org/content/early/2014/02/10/brain.awu013.abstract

言語の文法処理を支える3つの神経回路を発見/東京大の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 白夜φ ★ 2014/01/19(日) 22:19:49.04 ID:???
花や葉を形作る分子メカニズムを解明
~器官の発生に必須なオーキシンの流れを生み出す仕組みを発見~
自在に園芸植物をデザイン、増産にも期待

【概要】
奈良先端科学技術大学院大学 バイオサイエンス研究科 植物形態ダイナミクス研究室 古谷将彦助教、
田坂昌生教授らは、植物が花や葉を作るさいに必要なホルモンであるオーキシンについて、それを植物体内で働く場所まで届かせるために「オーキシンの流れを生み出す」という基本的な仕組みを明らかにした。
謎と言われた現象を分子遺伝学の手法により解明した。

植物ホルモンであるオーキシンは生合成された部位から機能する場所の方向に流れる形で輸送され、蓄積する。
そして、茎の先端に存在する“芽”においてオーキシンが蓄積することにより、花や葉などの植物の器官が形成される。
このような器官が形成される際のオーキシンの流れ方については明らかになりつつあるが、その流れを生み出す源の仕組みは謎であった。

古谷助教、田坂教授らは、独自に発見したオーキシンの流れを調節する遺伝子群が花の形成時期に機能することに着目。
これらの遺伝子機能を失い、花を作らなくなった変異体を用いて分子遺伝学的解析を行った。
その結果、この変異体ではオーキシンの流れが滞っていることを発見。
このことから、これらの遺伝子群がオーキシンの流れそのものを生み出す源であることを明らかにした。
さらに、これらの遺伝子群がオーキシンそのものによって誘導されることから、オーキシンの流れを増幅する仕組みが示された。

今後、オーキシンの流れを人工的に操作し花や葉の形や配置を自在に変えられる可能性があり、多くの大輪の花をつけるなど園芸植物の改変や農作物、植物バイオマスの増産が期待される。
研究成果は平成26年1月6日付けで米国科学アカデミー紀要(Proceedings of the National Academy of Sciences of the United States of America)の電子版に掲載された。

━━━━━━━━ 引用ここまで 全文は記事引用元でご覧ください ━━━━━━━━


6

▽記事引用元 奈良先端科学技術大学院大学 プレスリリース 01月17日配信記事
http://www.naist.jp/pressrelease/detail_j/topics/1693/

PDFファイル(356.78 KB)
http://www.naist.jp/topics_pdf/admin_9f368562416956d1de98e144b65b4f5d_1389955083_.pdf

▽関連リンク
PNAS
Masahiko Furutani, doi: 10.1073/pnas.1316109111
MAB4-induced auxin sink generates local auxin gradients in Arabidopsis organ formation
http://www.pnas.org/content/early/2014/01/03/1316109111.abstract

花や葉を形作る分子メカニズムを解明 器官の発生に必須なオーキシンの流れを生み出す仕組みを発見/奈良先端大の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 白夜φ ★ 2014/01/19(日) 22:37:38.83 ID:???
悪性脳腫瘍が脳内を動き回り広く散らばるしくみを解明 -新しい治療戦略確立へ-


岡山大学大学院医歯薬学総合研究科細胞生理学分野の松井秀樹教授、道上宏之助教、藤村篤史研究員らの研究グループは、悪性脳腫瘍が脳内に拡がるメカニズムを世界で初めて特定しました。
 
悪性脳腫瘍では、がん細胞が脳内に拡がることが多く、そのために手術による根治が困難となるなど、治療方法が限られます。
また、他のがんに比べて再発が多いこともよく知られています。
 
今回明らかにされたメカニズムに基づいて治療戦略を立てれば、既存の治療方法を格段に向上させ、術後の再発防止もできると期待されます。
 
本研究成果は2013年11月15日、アメリカの癌研究専門雑誌『Neoplasia』に掲載されました。

<業 績>
岡山大学大学院医歯薬学総合研究科細胞生理学分野の松井秀樹教授、道上宏之助教、藤村篤史研究員、熊本大学大学院生命研究科分子生理学教室の富澤一仁教授、魏范研助教らの共同研究グループ10人は、悪性脳腫瘍が脳内組織に広く拡がるメカニズムにおいてCyclin G2というタンパク質が中心的な役割を果たしている事を世界で初めて突き止めました。
 
悪性脳腫瘍は他のがんに比べて、正常な組織(脳組織)に拡がる性質が強く、そのため非常に質の悪いがんです。
その原因はいろいろ提唱されていますが、現在最も有力な説が『低酸素仮説』です。
悪性脳腫瘍では、がん細胞が増えすぎて血管が破綻し、腫瘍全体に酸素が届きにくくなります。
その結果、がん細胞の周辺が通常の脳組織と比べて低酸素状態になり、これをきっかけとしてがん細胞が動き回るようになり、脳内に広く散らばるとする考えです。
しかし、がん細胞が動くためには細胞骨格*1という細胞の梁のような構造がうまく制御されていなければなりませんが、「低酸素環境」と「細胞骨格の制御」という2つの現象をつなげる因子が何なのか、全く不明でした。
 
この研究ではCyclin G2と呼ばれるタンパク質がこの2つの現象をつなぐ重要な因子であることを見いだし、またその働き方を明らかにしました。
すなわち、がん細胞が低酸素にさらされると、がん細胞内でCyclin G2が急激に増え、細胞骨格に関連するたくさんのタンパク質をがん細胞の移動に適するようにコーディネイトします。
つまり、サイクリンG2は低酸素環境での細胞骨格制御における指揮官の役割を演じる事を見いだしたのです(図1)。

さらにこの研究では、Cyclin G2タンパク質がコーディネイトしている細胞骨格制御を阻害する薬剤を発見し(図2)、実際にマウス脳内でがん細胞が拡がることを抑制することにも成功しました。

図1 Cyclin G2がコーディネイトする低酸素による細胞移動の概略図
http://www.okayama-u.ac.jp/up_load_files/soumu-pdf/press25/press-140116img1.png
図2 Cyclin G2の関与するメカニズムを標的とした治療戦略
http://www.okayama-u.ac.jp/up_load_files/soumu-pdf/press25/press-140116img2.png

━━━━━━━━━ 引用ここまで 全文は記事引用元をご覧ください ━━━━━━━━━

▽記事引用元 岡山大学 プレスリリース 14.01.16
http://www.okayama-u.ac.jp/tp/release/release.html
4

悪性脳腫瘍が脳内を動き回り広く散らばるしくみを解明 新しい治療戦略確立へ/岡山大の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: ◆HeartexiTw @胸のときめきφ ★ 2014/01/16(木) 06:27:17.85 ID:???0 BE:2469031889-PLT(12557)
理化学研究所ライフサイエンス技術基盤研究センターなどのグループは、脳卒中患者の脳をMRIで時間を追って観察することにより、リハビリテーションによって脳の中心部にある神経回路が再構築されることを明らかにした。

神経回路再生のメカニズムや、脳卒中後に運動機能を回復させるための効果的なリハビリ手法の開発に貢献すると期待される。

7

*+*+ 日刊工業新聞 +*+*
http://www.nikkan.co.jp/news/nkx0720140116eaak.html

脳卒中後の神経回路、リハビリで再構築の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 白夜φ ★ 2014/01/10(金) 23:48:29.84 ID:???
2014年1月9日

独立行政法人理化学研究所
独立行政法人国立循環器病研究センター

脳卒中による運動障害からの回復メカニズムを解明
-リハビリテーションで脳神経回路が再構築される-

ポイント
・脳卒中患者の運動機能の回復と脳内神経線維連絡性を経時的に観察
・運動制御に関わる部位を「つなぐ」部位の神経線維連絡性は機能回復に関わる
・運動機能回復に関わる脳神経回路再構築の存在を拡散テンソルMRI画像で実証

要旨
理化学研究所(理研、野依良治理事長)と国立循環器病研究センター(橋本信夫理事長)は、脳卒中発症後の運動障害から脳神経回路が回復するメカニズムを解明しました。
これは、理研ライフサイエンス技術基盤研究センター(渡辺恭良センター長)機能構築イメージングユニットの林拓也ユニットリーダーと京都大学医学研究科附属脳機能総合研究センター(福山秀直センター長)の武信洋平研究員、国立循環器病研究センター脳神経内科の長束一行部長らによる共同研究グループの成果です。

脳卒中は、急性の脳梗塞や脳内出血などの脳血管障害による疾患を指し、言語障害、運動障害、感覚まひなど、多様な神経症状を伴います。
なかでも運動障害はリハビリテーションによってある程度回復するものの、詳細な回復メカニズムは分かっていませんでした。

共同研究グループは、脳卒中患者が発症後3カ月間のリハビリテーションを行う過程の、運動機能と脳内の「神経線維[1]連絡性」を時間を追って観察しました。
その結果、運動機能が3カ月間かけて回復する過程で、障害がある側の大脳皮質から脊髄へとつながる神経線維連絡路(錐体路[2])で神経線維の変性が徐々に進む一方、それを補うように脳の中心付近深部にある赤核(せきかく)[3]で神経線維の再構築が進むことが明らかとなりました。

これは、赤核における神経線維の再構築が、運動機能の回復と関係していることを示唆しています。
今後、神経線維の再構築を促進させる新しい治療法の開発や、リハビリテーション法そのものの最適化につながると期待できます。

本研究成果は、オンラインジャーナル『Neuroimage: Clinical』(2013年12月29日付け:日本時間2013年12月29日)に掲載されました。


ダウンロード (1)

-------------- 引用ここまで 全文は記事引用元をご覧ください -------------

▽記事引用元 理化学研究所 プレスリリース 2014年1月9日配信記事
http://www.riken.jp/pr/press/2014/20140109_1/

【脳神経】脳卒中による運動障害からの回復メカニズムを解明 リハビリテーションで脳神経回路が再構築される/理化学研究所などの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック Share on Tumblr Clip to Evernote
1: 白夜φ ★ 2014/01/12(日) 22:53:31.13 ID:???
水の界面で起こるフェントン反応のメカニズムを解明 -Fe(IV)=O中間体の直接検出に成功-2014年1月6日

江波進一 白眉センター特定准教授、坂本陽介 北海道大学環境科学院博士研究員(日本学術振興会PD)、Agustin J. Colussi 米国カリフォルニア工科大学客員研究員らの研究グループは、気液界面に存在する化学種を選択的に検出することのできるこれまでにない実験手法を用いて、水の界面で起こるフェントン反応のメカニズムの解明に世界で初めて成功しました。

この成果が、米国東部時間2013年12月30日に米国科学アカデミー紀要
「Proceedings of the National Academy of Sciences of the USA、略称:PNAS」(オンライン版)に掲載されました。

概要

二価の鉄イオンと過酸化水素の反応[Fe(II)+H2O2]はフェントン反応と呼ばれ、大気化学、生化学、グリーンケミストリーなど様々な分野で重要な役割を果たしています。
しかし、その反応機構はいまだによくわかっていません。
近年、空気-水などの水の界面(境界相)は水中などの均一な場に比べて特殊であり、界面特有の多くの興味深い現象が起こることがわかってきました。
水の界面は大気中の空気-雲の水滴界面や生体内での細胞膜-水界面など、我々の身の回りに多く存在しており、そこで起こっている界面フェントン反応は特に重要な役割を担っていると考えられます。
しかし、ナノ(十億分の一)メートルほどしかない極めて薄い水の界面に存在する化学種の反応を直接測定することは、これまで非常に困難でした。

同研究グループは気液界面に存在する化学種を選択的に検出することのできるこれまでにない実験手法を用いて、水の界面で起こるフェントン反応のメカニズムの解明に世界で初めて成功しました。
その結果、気液界面のフェントン反応は液中に比べて千倍以上速く進み、四価鉄Fe(IV)=O中間体と三価鉄Fe(III)を生成することが明らかになりました。
本結果はさまざまな分野に大きなインパクトを与えることが予想されます。


ダウンロード

--------------- 引用ここまで 全文は記事引用元をご覧ください ----------

▽記事引用元 京都大学 2014年1月6日配信記事
http://www.kyoto-u.ac.jp/ja/news_data/h/h1/news6/2013_1/140106_1.htm

▽関連リンク
PNAS
Shinichi Enami, doi: 10.1073/pnas.1314885111
Fenton chemistry at aqueous interfaces
http://www.pnas.org/content/early/2013/12/27/1314885111

水の界面で起こるフェントン反応のメカニズムを解明 Fe(IV)=O中間体の直接検出に成功/京都大などの続きを読む
スポンサーリンク

このページのトップヘ