理系にゅーす

このブログは宇宙、生物、科学、医学、技術など理系に特化したブログです! 理系に関する情報をネット上からまとめてご紹介します。

スポンサーリンク

細胞

    このエントリーをはてなブックマークに追加 mixiチェック
1: 伊勢うどんφ ★ 2014/01/28(火) 22:45:05.59 ID:???
鳥取大学は1月25日、クローニングしたRNA遺伝子に関連して発現変動する単一の「マイクロRNA」を悪性度の高い未分化がんに導入したところ、容易に悪性度を喪失させることができ、正常幹細胞へ形質転換できることを発表した。

成果は、鳥取大 医学部病態解析医学講座 薬物治療学分野の三浦典正 准教授らの研究チームによるもの。
研究の詳細な内容は、1月24日付けで英オンライン総合学術誌「Scientific Reports」に掲載された。

三浦准教授は、自身のクローニングした遺伝子がRNA遺伝子であり、がんの第1抗原と目されてきた「ヒトテロメレース逆転写酵素遺伝子(hTERT)」と関連して、特に未分化なヒトがん細胞において、その発現を制御させる性質を持つ特異な遺伝子として、また発がんやがんの悪性度に関わる遺伝子として機能解析をこれまでしてきた。

また、「未分化型悪性黒色腫」でも当該RNA遺伝子が増殖抑制できることを、製剤候補として「ハイドロゲル」や「アテロコラーゲン」を用いて確認してきた。

そして今回、そのRNA遺伝子を「shRNA法」という遺伝子発現を抑制する手法により、10種程度のヒトマイクロRNAによって発現変動することが究明されたのである。
そしてその1つ1つをがん細胞の中へ導入することで、最もがんを制御できる有効なものが検討された次第だ。
その結果「miR-520d」が三浦准教授らが"驚異的"とも表現する現象を誘導したのである。

2012年2月に、京都大学の山中伸弥教授らが当初iPS作製に使用した「293FT細胞」、または未分化な肝がん細胞、膵がん細胞、脳腫瘍、悪性黒色腫細胞で、球状の幹細胞または「がん幹細胞様」の細胞へ容易に変化させ、その細胞は「P53」というがん抑制遺伝子を高発現していることが見出されている。

それまでは、マイクロRNAのがんや再生医療の報告として、「miR-302」family、「miR-369」「200c」に関して多数種の併用でリプログラミングの試みがなされているが、1つでこのような効果をもたらす報告はなかった。

>>2に続く


9

マイナビニュース 2014/01/28 11:36
http://news.mynavi.jp/news/2014/01/28/170/

日経プレスリリース
http://release.nikkei.co.jp/detail.cfm?relID=353873&lindID=5

サイレポ
Hsa-miR-520d induces hepatoma cells to form normal liver tissues via a stemness-mediated process
http://www.nature.com/srep/2014/140124/srep03852/full/srep03852.html

【癌は治る!?】癌は容易に正常細胞や良性細胞へ変換できることを発見/鳥取大の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 伊勢うどんφ ★ 2014/01/29(水) 22:20:36.72 ID:???
 細胞に強い刺激を与え、iPS細胞(人工多能性幹細胞)のように様々な組織や臓器に変化する細胞を作る新手法をマウスの実験で発見したと、理化学研究所発生・再生科学総合研究センター(神戸市)と米ハーバード大などの国際研究グループが30日付の英科学誌「ネイチャー」に発表する。

 外部からの単純な刺激だけで、細胞の役割がリセットされるという発見は、生命科学の常識を覆す研究成果だ。
研究グループは今後、再生医療への応用も視野に、人間の細胞で同様の実験を進める。

 今回の手法は、細胞に強い刺激を与え、様々な組織などに変わる多能性を持たせたのが特徴。
研究チーム代表の同センターの小保方おぼかた晴子・研究ユニットリーダー(30)らは、こうした現象を「刺激によって引き起こされた多能性の獲得」という意味の英語の頭文字から、「STAP(スタップ)」と呼び、作製した細胞をSTAP細胞と命名した。

 研究チームは、マウスの脾臓ひぞうからリンパ球を取り出し、酸性の溶液に約30分間漬けた上で、特殊なたんぱく質を加えて培養し、2~3日で多能性細胞に変化させた。

 また、細いガラス管(直径約0・05ミリ)の中に細胞を何度も通すなどの物理的な刺激や、化学物質による刺激でも多能性を持つことを確認した。
リンパ球細胞だけでなく、筋肉や神経などの細胞でも、同様の結果を得た。

 動物の体は1個の受精卵が分裂と変化を繰り返し、成長していく。
いったん血液や皮膚、脳、内臓など体の組織や臓器になった細胞は、他の細胞に変化することはないとされていた。

 この定説を覆したのが、一昨年にノーベル賞を受賞した京都大学の山中伸弥教授だ。
2006年、マウスの細胞に4種類の遺伝子を入れて細胞の状態を受精卵に近い状態に戻し、どのような組織や臓器にもなる多能性を持たせ、iPS細胞と名付けた。
07年には人間の細胞でも成功した。

 一方、STAP細胞の作製方法はiPS細胞よりも簡単で、効率が良いという。iPS細胞の課題であるがん化のリスクも低いとみられる。

7

(2014年1月29日21時54分 読売新聞)
http://www.yomiuri.co.jp/science/news/20140129-OYT1T00996.htm

Nature
Stimulus-triggered fate conversion of somatic cells into pluripotency
http://www.nature.com/nature/journal/v505/n7485/full/nature12968.html

【速報!!】外部から強い刺激を与えるだけで多能性幹細胞の性質を持つ「STAP細胞」の作成に成功、理化研などの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 伊勢うどんφ ★ 2014/01/24(金) 22:28:13.36 ID:???
 京都大iPS細胞研究所などのチームは22日、ヒトの人工多能性幹細胞(iPS細胞)に加えることで、腎臓のもとになる細胞集団を効率よく作製できる2種類の化合物を見つけたと明らかにした。

 腎臓の組織の大半は中間中胚葉という細胞集団をもとに作られる。
今回の方法は、高価で品質が不安定なタンパク質を用いる従来法に比べ、培養コストを低く抑え、培養期間を短縮した。

 チームは、この化合物を使ってiPS細胞から変化させた中間中胚葉から、ヒトの腎臓の尿細管を作り出すことに成功しており、「腎臓の細胞や組織を移植する再生医療につながると期待される」としている。

 チームは、中間中胚葉への分化を促進するとみられていた約1800種類の化合物をiPS細胞に一つずつ加えて培養し、中間中胚葉に変化するか調べた。するとうち2種類では6日後、75%以上の高い割合で中間中胚葉を作り出した。
従来法では同じ期間で20%程度しか変化しなかった。

 さらにこの中間中胚葉をマウスの胎児の腎臓細胞と一緒に培養し、腎尿細管の管状構造の一部を作ることに成功した。

 研究成果は米オンライン科学誌プロスワンに掲載された。

5

2014.1.22 10:59 産経新聞
http://sankei.jp.msn.com/science/news/140122/scn14012211030001-n1.htm?view=pc

Cira プレスリリース
http://www.cira.kyoto-u.ac.jp/j/pressrelease/news/140117-084117.html

プロワン
"Efficient and rapid induction of human iPSCs/ESCs into nephrogenic intermediate mesoderm using small molecule-based differentiation methods"
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0084881

ヒトiPS/ES細胞から効率よく腎臓のもとになる細胞へ分化させる化合物を発見/京都大の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 白夜φ ★ 2014/01/20(月) 00:04:35.58 ID:???
大脳基底核線条体ニューロン・グリア細胞における持続時間の長いカルシウム振動の発見
2014年1月16日 10:00 | プレスリリース , 受賞・成果等 , 研究成果


東北大学大学院医学系研究科医用画像工学分野の小山内 実(おさない まこと)准教授、田村 篤史(たむら あつし)研究員を中心としたグループは、大脳基底核線条体において持続時間の長い、新しいタイプの細胞内カルシウム振動を発見しました。

カルシウムは細胞の機能調節に重要な役割を果たしているため、このカルシウム振動が脳における情報処理の状態を規定している可能性があります。
また、このカルシウム振動は代謝型グルタミン酸受容体5型を阻害することにより消失しますが、代謝型グルタミン酸受容体5型の阻害薬はパーキンソン病治療薬のターゲットとなっており、今回発見したカルシウム振動がパーキンソン病の病態と関連している可能性があります。
本研究結果はオープンアクセスジャーナルの PLoS ONE (電子版) に掲載されます。

3

▽記事引用元 東北大学 プレスリリース
http://www.tohoku.ac.jp/japanese/2014/01/press20140108-02.html

詳細(プレスリリース本文)
http://www.tohoku.ac.jp/japanese/newimg/pressimg/tohokuuniv-press_20140108_02web.pdf

▽関連リンク
PLOSONE
Published: January 15, 2014・DOI: 10.1371/journal.pone.0085351
Both Neurons and Astrocytes Exhibited Tetrodotoxin-Resistant Metabotropic Glutamate Receptor-Dependent Spontaneous Slow Ca2+ Oscillations in Striatum
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0085351

大脳基底核線条体ニューロン・グリア細胞における持続時間の長いカルシウム振動の発見/東北大の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 白夜φ ★ 2014/01/19(日) 22:37:38.83 ID:???
悪性脳腫瘍が脳内を動き回り広く散らばるしくみを解明 -新しい治療戦略確立へ-


岡山大学大学院医歯薬学総合研究科細胞生理学分野の松井秀樹教授、道上宏之助教、藤村篤史研究員らの研究グループは、悪性脳腫瘍が脳内に拡がるメカニズムを世界で初めて特定しました。
 
悪性脳腫瘍では、がん細胞が脳内に拡がることが多く、そのために手術による根治が困難となるなど、治療方法が限られます。
また、他のがんに比べて再発が多いこともよく知られています。
 
今回明らかにされたメカニズムに基づいて治療戦略を立てれば、既存の治療方法を格段に向上させ、術後の再発防止もできると期待されます。
 
本研究成果は2013年11月15日、アメリカの癌研究専門雑誌『Neoplasia』に掲載されました。

<業 績>
岡山大学大学院医歯薬学総合研究科細胞生理学分野の松井秀樹教授、道上宏之助教、藤村篤史研究員、熊本大学大学院生命研究科分子生理学教室の富澤一仁教授、魏范研助教らの共同研究グループ10人は、悪性脳腫瘍が脳内組織に広く拡がるメカニズムにおいてCyclin G2というタンパク質が中心的な役割を果たしている事を世界で初めて突き止めました。
 
悪性脳腫瘍は他のがんに比べて、正常な組織(脳組織)に拡がる性質が強く、そのため非常に質の悪いがんです。
その原因はいろいろ提唱されていますが、現在最も有力な説が『低酸素仮説』です。
悪性脳腫瘍では、がん細胞が増えすぎて血管が破綻し、腫瘍全体に酸素が届きにくくなります。
その結果、がん細胞の周辺が通常の脳組織と比べて低酸素状態になり、これをきっかけとしてがん細胞が動き回るようになり、脳内に広く散らばるとする考えです。
しかし、がん細胞が動くためには細胞骨格*1という細胞の梁のような構造がうまく制御されていなければなりませんが、「低酸素環境」と「細胞骨格の制御」という2つの現象をつなげる因子が何なのか、全く不明でした。
 
この研究ではCyclin G2と呼ばれるタンパク質がこの2つの現象をつなぐ重要な因子であることを見いだし、またその働き方を明らかにしました。
すなわち、がん細胞が低酸素にさらされると、がん細胞内でCyclin G2が急激に増え、細胞骨格に関連するたくさんのタンパク質をがん細胞の移動に適するようにコーディネイトします。
つまり、サイクリンG2は低酸素環境での細胞骨格制御における指揮官の役割を演じる事を見いだしたのです(図1)。

さらにこの研究では、Cyclin G2タンパク質がコーディネイトしている細胞骨格制御を阻害する薬剤を発見し(図2)、実際にマウス脳内でがん細胞が拡がることを抑制することにも成功しました。

図1 Cyclin G2がコーディネイトする低酸素による細胞移動の概略図
http://www.okayama-u.ac.jp/up_load_files/soumu-pdf/press25/press-140116img1.png
図2 Cyclin G2の関与するメカニズムを標的とした治療戦略
http://www.okayama-u.ac.jp/up_load_files/soumu-pdf/press25/press-140116img2.png

━━━━━━━━━ 引用ここまで 全文は記事引用元をご覧ください ━━━━━━━━━

▽記事引用元 岡山大学 プレスリリース 14.01.16
http://www.okayama-u.ac.jp/tp/release/release.html
4

悪性脳腫瘍が脳内を動き回り広く散らばるしくみを解明 新しい治療戦略確立へ/岡山大の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 伊勢うどんφ ★ 2014/01/17(金) 02:36:13.01 ID:???
東京大学大学院 理学系研究科物理学専攻・谷本博一博士研究員(現ジャックモノー研究所・博士研究員)と同専攻・佐野雅己教授らの研究グループは1月6日、細胞運動の物理的な法則を発見したと発表した。

運動は細胞の基本的な性質のひとつであり、この細胞運動の機構については、生物学的な立場からはすでに数多くの研究がなされている。
しかし、物理学的な立場から、細胞運動の「原理」を探る試みは始まったばかりだという。

研究グループは、複雑なデータを座標の級数で展開することでその空間構造をいくつかの簡単な座標で代表させる「多重極展開」と呼ばれる手法を導入し、細胞の応力場の空間構造を解析した。

牽引力顕微鏡(Traction Force Microscopy)を構築し、典型的な運動性細胞である細胞性粘菌の応力場をナノニュートン・マイクロメートルの精度で計測。
得られた測定結果を多重極展開に基づいて解析し、応力場の回転対称性と前後対称性それぞれの破れを特徴づける2つの指標を計算した。
その結果、これらの2つの座標が細胞の運動性を決めていることが明らかになったという。

多細胞生物の応用に期待

細胞の運動法則を発見したこの研究手法は、他の生命現象へも応用が可能とされている。
とくに発生過程で個々の細胞が空間的に協調して運動することで複雑な成体が形成される多細胞生物への応用が期待される。

3

QLIFE PRO 2014/1/15
http://www.qlifepro.com/news/20140115/expect-cell-movement-law-discovered-medical-applications.html

プレスリリース
細胞の運動法則を発見 - プレスリリース - 東京大学 大学院理学系研究科・理学部
http://www.s.u-tokyo.ac.jp/ja/press/2014/02.html

Biophysical Journal
- A Simple Force-Motion Relation for Migrating Cells Revealed by Multipole Analysis of Traction Stress
http://www.cell.com/biophysj/retrieve/pii/S0006349513042161

細胞が自ら動く力とその運動の間に成立する関係を解明 、東大の続きを読む
スポンサーリンク

このページのトップヘ