理系にゅーす

このブログは宇宙、生物、科学、医学、技術など理系に特化したブログです! 理系に関する情報をネット上からまとめてご紹介します。

スポンサーリンク

量子コンピュータ

    このエントリーをはてなブックマークに追加 mixiチェック
~~引用ここから~~

1: ◆azusaI.91Q @あずささん ★@\(^o^)/ 2014/06/26(木) 08:09:33.93 ID:???0.net
謎の超高速計算機、「量子コンピュータ」を巡る議論が混迷の度合いを深めている。
ここ数年、「世界初の量子コンピュータを実現した」と主張してきたカナダのベンチャー企業、D-Wave
Systems(以下、D-Wave)は先月、同社製コンピュータ「D-Wave 2」の内部に、量子計算の証拠となる
「量子絡み合い」と呼ばれる現象を確認したとする論文
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.4.021041
を発表。これをもって同社の製品が本物の量子コンピュータである証拠が得られた、と主張している。

一方、今月下旬には米国やスイスの科学者らが、「D-Wave 2には量子コンピュータならではの高速性を
示す証拠は見いだせなかった」とする論文
http://www.sciencemag.org/content/early/2014/06/18/science.1252319#aff-1
を発表し、D-Wave側の主張に冷水を浴びせた。

グーグル社内でも見解は割れている模様

興味深いのは、2本目の論文の共著者にグーグルの社員が含まれていること。グーグルは昨年、NASA(米航空宇宙局)と共にD-Wave 2を購入して以来、これが本物の量子コンピュータであるとするD-Waveの主張を強力にサポートしてきた。そうした中、グーグルの社員が今度はD-Wave 2の量子性に疑問を投げかける論文を発表するのは、周囲に奇妙な印象を与えかねない。

もちろん、これはグーグルが社内に相反する2つの見方を許容することを示した点で、同社の自由な企業文化を反映していると、半ばポジティブに捉えることもできる。が、一方で、この"量子コンピュータ"の正当性に関しては、いかに優秀な社員が揃っているグーグルと言えども、一枚岩で通すことはできないことを示している。それほど真贋の判定が難しい問題なのではないか。

説明が遅れたが、量子コンピュータとは「原子核」や「電子」、「クォーク」のようなミクロ世界の現象を記述する量子力学の原理を、計算の原理に応用した画期的なコンピュータだ。19世紀終盤から20世紀初頭にかけて、欧州を中心に確立された量子力学は、現代物理学のバックボーンとして、その後の固体物理学や半導体工学を生み出す礎となった。

これら新たな学問や技術は、固体中の電子の挙動を見事に解明し、これを自由自在に操ることを可能にした。

(以下省略)
※以下の部分はソース元にてご確認ください。

ソース/現代ビジネス
http://gendai.ismedia.jp/articles/-/39671
~~引用ここまで~~


引用元: 【科学】混迷深まる量子コンピュータ論争・・・第3の方式をマイクロソフトが支持

量子コンピュータ・・・第3の方式をマイクロソフトが支持の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
~~引用ここから~~

1: TwilightSparkle ★@\(^o^)/ 2014/05/19(月) 17:45:14.22 ID:???.net
 実現は遠い未来のことだと考えられていた「量子コンピュータ」。それが突然、従来とは異なる方式で実現した。カナダD-Wave Systemsが開発し、米グーグルや米航空宇宙局(NASA)が導入した量子コンピュータ「D-Wave」だ。

 D-Waveが期待通りの性能を出すことができれば、現在のビッグデータ活用が子供の遊びに思えてくるほどの、計り知れないビジネス上のインパクトがもたらされる。そんなD-Waveに、日本の研究や技術が大きく寄与していたことを知っているだろうか。

 それだけではない。現在、日本の国立情報学研究所(NII)が、D-Waveのさらに上を行く日本独自の量子コンピュータの開発を進めている。

 次なるIT革命の中心地は、実は日本だ。知られざる量子コンピュータの真の姿に迫る。

 米航空宇宙局(NASA)や米グーグルが、熱い視線を注ぐ日本人研究者がいる。彼が生み出した理論が、「量子コンピュータ」を実現するきっかけとなったからだ。
 NASAやグーグルは、量子コンピュータに多大な期待をかけ、共同で様々な性能検証を進めている。その理由は何か―。

 東京工業大学理学部長を務める西森秀稔教授(写真1)。彼こそがNASAやグーグルが注目する日本人研究者だ。2014年3月下旬には、NASAとグーグルが米国に西森教授を招き、意見交換をしている。

 なぜNASAやグーグルは、西森教授に注目するのか。

※記事の一部を引用しました。全文及び参考画像等はリンク先の元記事で御覧ください。
ソース:中田 敦=日経コンピュータ (筆者執筆記事一覧) 出典:日経コンピュータ 2014年4月17日号  pp.26-29
http://itpro.nikkeibp.co.jp/article/COLUMN/20140514/556564/

引用元: 【量子力学】 量子コンピュータ 突然商用化した夢のマシン 「D-wave」 [ITpro]

【量子力学】 量子コンピュータ 突然商用化した夢のマシン 「D-wave」 [ITpro]の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 伊勢うどんφ ★ 2014/03/18(火) 22:08:07.25 ID:???
 日本電信電話(NTT)は3月17日、世界最大規模となる、100万ビット規模の量子コンピュータの実現に向けた新手法を確立したことを発表した。

 量子コンピュータ実現への最大の課題としては、量子ビットのサイズ拡張性とエラーの低減にあるとされている。
この課題を解決する方法として、周期的に1個ずつの原子を閉じ込めることが可能な「光格子」の応用が注目されている。
光格子中の原子は集積性や均一性が優れている一方、人為的な制御性が困難な面があり、量子計算に求められるような“大規模量子もつれ状態”を、高精度かつ高速に作る方法は見つかっていなかった。

 今回、NTT物性科学基礎研究所およびNTTセキュアプラットフォーム研究所は、光格子中に束縛された約100万個の原子に対して、高精度(理想的なもつれ生成に対して99%以上の一致度合い)かつ高速(1ms以下)に、“大規模量子もつれ状態”を作る手法を世界で初めて確立。本成果により、100万ビット規模の量子計算が実現できる可能性が高まった。

 今後は、具体的な実験装置や実施条件などの検討を進め、今後5年以内に1万ビット程度の測定型量子コンピュータが実現できるよう研究開発に取り組む方針だ。

3/17
http://www.rbbtoday.com/article/2014/03/17/117929.html

【量子】世界最大規模の量子コンピュータを実現する新手法を確立…NTTの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: ◆SWAKITI9Dbwp @すわきちφφ ★ 2014/01/30(木) 10:55:49.27 ID:???
ダイヤモンドを用いて量子コンピュータの実現に不可欠な量子エラー訂正に成功
~量子情報デバイスの実用化・量子コンピューティングの実現に前進~

平成26年1月30日

国立大学法人 筑波大学
独立行政法人 日本原子力研究開発機構
独立行政法人 科学技術振興機構

ポイント
○室温での固体量子ビットの量子エラー訂正に世界で初めて成功
○量子コンピュータに必須の「エラー訂正」をしながら計算というエラー耐性を多量子ビットへ拡張可能
○実用的な固体量子情報デバイス開発への道を開く

量子情報は、環境からのノイズによってたやすく壊されてしまうため、量子エラー訂正なしには量子コンピューティングは実現しないと言われてきました。

国立大学法人 筑波大学(以下「筑波大学」という)磯谷 順一 名誉教授(筑波大学 知的コミュニティ基盤研究センター 前主幹研究員)、独立行政法人 日本原子力研究開発機構(以下「JAEA」という)量子ビーム応用研究部門 半導体耐放射線性研究グループ 大島 武 リーダーらは、ドイツとの共同研究により、室温での固体量子ビットの量子エラー訂正に世界で初めて成功しました。

ダイヤモンド中のカラーセンター注1)の1つであるNVセンター注2)の単一欠陥(単一分子に相当)を用いて、電子スピン注3)1個と核スピン3個からなるハイブリッド量子レジスタを作成しました。
これを用いて、室温動作の固体スピン量子ビットでは世界で初めて、量子エラー訂正のプロトコルの実証に成功したものです。
これは、量子情報デバイス、量子コンピューティングに必須の量子エラー訂正における大きなブレークスルーです。
この成果により、量子中継器など、実用的な固体量子情報デバイス開発、量子コンピュータの実現に向けて大きく前進しました。

本研究は科学技術振興機構(JST) 国際科学技術共同研究推進事業(戦略的国際共同研究プログラム)日独共同研究(ナノエレクトロニクス)「ダイヤモンドの同位体エンジニアリングによる量子コンピューティング」(日本側研究代表者:磯谷 順一 筑波大学 名誉教授、ドイツ側研究代表者:ウルム大学 Fedor Jelezko 教授)の一環として行われました。
本研究成果は「NATURE誌」2014年1月29付け掲載されます。

(詳細はリンク先をご覧ください)

JSTプレスリリース
http://www.jst.go.jp/pr/announce/20140130/index.html

【画像1】
http://www.jst.go.jp/pr/announce/20140130/icons/zu1.gif
図1 ダイヤモンド中のNVセンターの構造とエネルギー準位
NVセンターは、炭素を置換した窒素と隣接する格子位置の原子空孔とのペアーで電荷-1、電子スピンS=1をもちます。

有機色素なみに光を強く吸収し、赤色の蛍光を強く発光しますので、励起レーザー光(緑色)の焦点を小さなスポット(径~300nm)に絞り、その位置からの蛍光のみを観測できる共焦点顕微鏡を用いると室温で単一欠陥を観測することができます。
蛍光強度がスピン副準位(Ms=0,±1)に依存することを用いて、単一欠陥の単一電子スピンについてMs=0であるかMs=±1であるかを読み出すことができます。
光をあてることにより、室温でMs=0の状態にすることができます(光による初期化)。

【画像2】
http://www.jst.go.jp/pr/announce/20140130/icons/zu2.jpg
図2 ダイヤモンドの電子線照射・熱処理によるNVセンター作製
写真は住友電工が合成した天然存在比の結晶。

【画像3】
http://www.jst.go.jp/pr/announce/20140130/icons/zu3.gif
図3 ダイヤモンド中のNVセンターを用いた量子情報保持時間の長い核スピンと高速な量子操作・光による読み出しが可能な電子スピンを組み合わせたハイブリッド量子レジスタ電子スピンの初期化やスピンの読み出しには光を用います(蛍光の捕集効率を高めるためにソリッド・イマージョンレンズを用いました)。

核スピンの初期化には電子スピンとのSWAPゲートを用い、シングル・ショット読み出しで確認します。
スピンの量子操作には、周波数を選んだ(あるいは異なる周波数を組み合わせた)マイクロ波パルス、ラジオ波パルスをダイヤモンド表面に作成したコプレナー導波路を用いて外から加えます。
ハイブリッド量子レジスタはサブナノスケールの大きさです。高磁場(~620mT)を用いました。
Nature
http://www.nature.com/nature/journal/vaop/ncurrent/full/nature12919.html
8

ダイヤモンドを用いて量子コンピュータの実現に不可欠な量子エラー訂正に成功…筑波大学などの続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: ドラゴンスープレックス(catv?) 2014/01/03(金) 23:56:22.36 ID:Ioll1KbG0 BE:3667243379-PLT(12330) ポイント特典
"NSA seeks to build quantum computer that could crack most types of encryption"
http://www.washingtonpost.com/world/national-security/nsa-seeks-to-build-quantum-computer-that-could-crack-most-types-of-encryption/2014/01/02/8fff297e-7195-11e3-8def-a33011492df2_story.html

In room-size metal boxes -secure against electromagnetic leaks, the National Security
Agency is racing to build a computer that could break nearly every kind of encryption used
to protect banking, medical, business and government records around the world.

According to documents provided by former NSA contractor Edward Snowden, the effort to
build “a cryptologically useful quantum computer” ? a machine exponentially faster than
classical computers ? is part of a $79.7 million research program titled “Penetrating Har
Targets.” Much of the work is hosted under classified contracts at a laboratory in
College Park, Md.

↓計画の詳細説明はココ
http://apps.washingtonpost.com/g/page/world/a-description-of-the-penetrating-hard-targets-project/691/

http://cryptome.org/2014/01/nsa-quantum-computer.pdf
8

【脅威の素因数分解マシン】 NSA、暗号解読するための量子コンプーターに本腰 - 83億円投入、アルカイダ真っ青の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: バックドロップホールド(家) 2014/01/01(水) 06:29:51.73 ID:mlLYi8Y9P BE:647314733-PLT(22223) ポイント特典
http://www.nikkan.co.jp/news/nkx0720140101eaaa.html
最近になって量子コンピューターの実現性が一気に高まってきた。

1

スーパーコンピューターが何百年もかかって解くような問題を、数秒で計算できるようになると期待されている。一方、自動運転車や医療・サービスロボットが現実になりつつあり、これらの技術を支える人工知能(AI)への量子コンピューターの応用を視野に入れた研究も始まった。まさにSF的な世界が目の前に迫っている。(政年佐貴恵)

量子コンピューターとは、量子物理学の原理を利用して計算を行う、次世代のコンピューターだ。量子コンピューターは「0であると同時に1」という重ね合わせの状態を表現できる。そのため並列処理が可能で、これまでにないほどの高速で計算できるという原理だ。では量子コンピューターの実現によって、何ができるようになるのか。

期待されているのは、スパコンでも計算に数十-数百年かかるような問題の高速計算だ。また最も期待されているのが「組み合わせ最適化問題」への利用。ある問題に対して複数の回答があり、どれが最適かを見つけ出すような問題だ。

例えば、たんぱく質の折り畳み機構の解明や無線通信における周波数割り当ての問題、カーナビゲーションシステムでリアルタイムに渋滞を避けるような経路の検索などがこれにあたる。このケースでは厳密には量子コンピューターではなく、量子力学の原理を利用してある条件を満たす状態を探す「量子シミュレーター」が使われる。


【画像】
NTT物性基礎研が開発を進める集積化量子光回路
http://www.nikkan.co.jp/news/images/nkx20140101eaaa.png

量子コンピューター、難問も数秒でSF世界現実にの続きを読む
スポンサーリンク

このページのトップヘ