理系にゅーす

このブログは宇宙、生物、科学、医学、技術など理系に特化したブログです! 理系に関する情報をネット上からまとめてご紹介します。

スポンサーリンク

受容体

    このエントリーをはてなブックマークに追加 mixiチェック
~~引用ここから~~

1: 2014/07/03(木) 00:42:27.51 ID:???0.net
九大、尿のにおいでがん検知のシステム開発へ
http://www.nikkei.com/article/DGXNZO73688010S4A700C1LX0000/
日本経済新聞 2014/7/3 0:37


 九州大学は人の尿でがんを検知できるシステムの開発に乗り出す。においを感じ取る嗅覚受容体の形態が哺乳類と同じ線虫を応用し、がん患者が持つ物質のにおいを検知することを狙う。5年後をメドに医療機関用の検査機器の開発を目指し、さらに将来的には家庭用検査キット作りにもつなげたいという。

 九州大の味覚・嗅覚センサ研究開発センター内に設置した「応用医療センシング部門」で取り組む。計画では、においに反応する線虫の受容体を組織するタンパク質を解明した後、受容体を人工的に作成。

続きはソースで
~~引用ここまで~~


引用元: 【医療】尿のにおいでがん検知のシステム開発へ 九大 [7/3]

尿のにおいでがんを検知!の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
~~引用ここから~~

1: 白夜φ ★@\(^o^)/ 2014/05/17(土) 23:10:07.17 ID:???.net
PRESS RELEASE(2014/05/12)

神経障害性疼痛の仕組みを解明
~ミクログリアを「痛みモード」にかえる実行役を特定~

概 要
九州大学大学院薬学研究院薬理学分野の井上和秀 主幹教授と津田誠 准教授を中心とする研究グル
ープは、神経のダメージで発症する慢性的な痛み(神経障害性疼痛)の原因タンパク質として「IRF5(*1)」を突き止めました。

IRF5 は、神経の損傷後に脳・脊髄の免疫細胞と呼ばれる「ミクログリア(*2)」の中だけで増え、IRF5 を作り出せない遺伝子操作マウスでは痛みが弱くなっていました。さらに、研究グループは、2003年にP2X4 受容体(*3)というタンパク質のミクログリアでの増加が神経障害性疼痛に重要であることを英国科学誌Nature で発表していますが、実は今回見つかったIRF5 がP2X4 受容体を増やす実行役であることも明らかにしました。

この研究成果は、慢性疼痛メカニズムの解明へ向けた大きな前進となり、痛みを緩和する治療薬の開発に応用できることが期待されます。

本研究は、最先端・次世代研究開発支援プログラム、および独立行政法人 科学技術振興機構(JST)戦
略的創造研究推進事業チーム型研究(CREST)の成果で、英国科学誌 『Nature Communications』 オ
ンライン版に2014 年5 月13 日付け(英国時間)で発表されます。

▲引用ここまで 全文は引用元でどうぞ----------

▽記事引用元 九州大学 PRESS RELEASE(2014/05/12)
http://www.kyushu-u.ac.jp/pressrelease/2014/2014_05_12.pdf (pdf)

▽関連リンク
Nature Communications 5, Article number: 3771 doi:10.1038/ncomms4771
Received 27 November 2013 Accepted 01 April 2014 Published 13 May 2014
Transcription factor IRF5 drives P2X4R+-reactive microglia gating neuropathic pain
http://www.nature.com/ncomms/2014/140513/ncomms4771/full/ncomms4771.html

引用元: 【医学】神経障害性疼痛の仕組みを解明 ミクログリアを「痛みモード」にかえる実行役を特定/九州大

神経障害性疼痛の仕組みを解明!の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: フェイスロック(WiMAX) 2014/03/02(日) 21:34:40.52 ID:B5OttE0s0 BE:1283184735-PLT(12001) ポイント特典
理研など、大規模シミュレーションで細胞内分子間情報伝達効率の詳細を解明

理化学研究所(理研)は2月18日、オランダ原子分子国立研究所との共同研究により、スーパーコンピュータによる大規模シミュレーションにより、細胞内分子間の情報伝達効率の上限を定義する基本理論を巡る論争に終止符を打ったと発表した。

(中略)

細胞は分子を用いて外界を感じ、考える。細胞の「目」であり、また「神経細胞」にあたるのが、細胞が持つ各種のタンパク質分子だ。細胞は、細胞膜上にある「受容体」と呼ばれる分子を用いて外界の環境を感じている。また、細胞内の分子の間で何段階にもわたって情報の受け渡しを繰り返すことで考え、どの遺伝子の発現をオンにしてどの遺伝子の発現をオフにするか、また幹細胞がどんな種類の細胞に分化するのかなどの意思決定を行っているというわけだ。

分子の間でどのように情報が受け渡されるのかという疑問に対し、1977年に米ハーバード大学のハワード・バーグ教授らによって、細胞内の分子間でどれだけの情報を受け渡せるかの上限を定義する「バーグ=パーセル限界」の理論が提案された。
(中略)
長年、バーグ=パーセル限界は「直感的に定義されたものであり、数理的には厳密な裏付けを持たない」と考えられてきた。ところが、2005年に米プリンストン大学のウイリアム・ビアレック教授らが現代的な統計物理学を駆使したより精緻な理論を提唱したことで、状況が変化する。双方の理論が予測する結果に矛盾があることが問題となったのだ。

どちらの理論が正しいのかを直接的に検証するためには、実験で分子と分子の結合と乖離を精密に計測する必要がある。しかし、この検証には時間スケールで1マイクロ秒以下、空間スケールで数nm以下という精密さで分子1つ1つの動きを追う必要があり、レーザー顕微鏡などの先端機器を用いても不可能だ。そこで研究チームは、非常に精密なコンピュータ・シミュレーションを用いてどちらの理論が正しいのか検証することにしたというわけだ。

(後略)
★ソース
http://news.mynavi.jp/news/2014/02/19/413/index.html

★60秒でわかるプレスリリース
2014年2月18日
細胞内分子間の情報伝達効率の理論的上限をめぐる論争に終止符
-細胞がいかに「感じ」、「考える」かのより深い理解へ-
http://www.riken.jp/pr/press/2014/20140218_1/digest/

★報道発表資料
http://www.riken.jp/pr/press/2014/20140218_1/
5

理研、細胞の情報伝達速度を解明! 長年の論争に終止符を打ったと発表の続きを読む
スポンサーリンク

このページのトップヘ