~~引用ここから~~
1: エタ沈φ ★@\(^o^)/ 2014/06/14(土) 13:09:57.58 ID:???.net
1: エタ沈φ ★@\(^o^)/ 2014/06/14(土) 13:09:57.58 ID:???.net
慶応義塾大学(慶応大)は6月11日、マウスおよびヒトの心臓線維芽細胞からiPS細胞を経ずに短期間で効率的に心筋様細胞を直接作製する方法を開発したほか、心筋直接誘導の仕組みの一部を解明したと発表した。
同成果は、同大医学部循環器内科の家田真樹 特任講師、村岡直人 助教らによるもの。詳細は、欧州科学雑誌「The EMBO Journal」のオンライン速報版にて公開された。
心臓細胞は増殖しないため、再生能力がなく、心筋梗塞などで障害を受けると、線維化しポンプ機能が低下してしまう。
その治療法は、心臓移植以外になく、日本ではドナー不足などの問題があり、再生医療の実用化が期待されるようになっている。
しかし、iPS細胞などの幹細胞は、分化誘導効率の悪さ、腫瘍形成の可能性、移植細胞の生着率の低さなどの課題があった。
一方、心臓の細胞は、その約30%が心筋細胞、残りの50%以上をポンプ機能を持たない心臓線維芽細胞で構成されており、この心臓線維芽細胞を直接その場で心筋細胞に転換できれば、幹細胞を用いた際の各種課題を解決できる可能性があるという仮説のもと、研究グループは幹細胞を介さず、直接心筋を作製する心臓再生医療の研究をこれまで行ってきた。
すでに2012年には、マウス生体内の心筋梗塞線維化巣で心筋様細胞の再生に成功していたほか、2013年にはGata4、Mef2c、Tbx5、Mesp1、Myocdという5つの遺伝子によるヒト心臓線維芽細胞から心筋様細胞を直接作製できることを報告していた。
ただし、作製効率は十分でなく、実際に臨床応用するためにはより効率の高い心筋作製法の開発や、直接誘導を阻害する因子や繊維芽細胞から心筋細胞への運命転換の仕組みが不明であったことから、その解明などが求められていた。
続きはソースで
http://news.mynavi.jp/news/2014/06/12/293/
慶応プレス
http://www.keio.ac.jp/ja/press_release/2014/osa3qr0000003rkj.html
エンボジャーナル
MiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures
http://onlinelibrary.wiley.com/doi/10.15252/embj.201387605/abstract
~~引用ここまで~~同成果は、同大医学部循環器内科の家田真樹 特任講師、村岡直人 助教らによるもの。詳細は、欧州科学雑誌「The EMBO Journal」のオンライン速報版にて公開された。
心臓細胞は増殖しないため、再生能力がなく、心筋梗塞などで障害を受けると、線維化しポンプ機能が低下してしまう。
その治療法は、心臓移植以外になく、日本ではドナー不足などの問題があり、再生医療の実用化が期待されるようになっている。
しかし、iPS細胞などの幹細胞は、分化誘導効率の悪さ、腫瘍形成の可能性、移植細胞の生着率の低さなどの課題があった。
一方、心臓の細胞は、その約30%が心筋細胞、残りの50%以上をポンプ機能を持たない心臓線維芽細胞で構成されており、この心臓線維芽細胞を直接その場で心筋細胞に転換できれば、幹細胞を用いた際の各種課題を解決できる可能性があるという仮説のもと、研究グループは幹細胞を介さず、直接心筋を作製する心臓再生医療の研究をこれまで行ってきた。
すでに2012年には、マウス生体内の心筋梗塞線維化巣で心筋様細胞の再生に成功していたほか、2013年にはGata4、Mef2c、Tbx5、Mesp1、Myocdという5つの遺伝子によるヒト心臓線維芽細胞から心筋様細胞を直接作製できることを報告していた。
ただし、作製効率は十分でなく、実際に臨床応用するためにはより効率の高い心筋作製法の開発や、直接誘導を阻害する因子や繊維芽細胞から心筋細胞への運命転換の仕組みが不明であったことから、その解明などが求められていた。
続きはソースで
http://news.mynavi.jp/news/2014/06/12/293/
慶応プレス
http://www.keio.ac.jp/ja/press_release/2014/osa3qr0000003rkj.html
エンボジャーナル
MiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures
http://onlinelibrary.wiley.com/doi/10.15252/embj.201387605/abstract
引用元: ・【マイクロRNA】iPS細胞を用いない短期間かつ効率的な心筋細胞直接作製法を開発、慶応大
iPS細胞を使わずに、簡単でより早く心筋細胞を作る方法を開発の続きを読む