理系にゅーす

このブログは宇宙、生物、科学、医学、技術など理系に特化したブログです! 理系に関する情報をネット上からまとめてご紹介します。

スポンサーリンク

電場

    このエントリーをはてなブックマークに追加 mixiチェック
~~引用ここから~~

1: 2014/06/30(月) 22:42:34.34 ID:???.net
ナショナルジオグラフィック 公式日本語サイト 6月27日 19時21分配信

 自然界で発生する電場を感知できる能力を進化させた動物がいるというだけでも驚きだが、自分で電気を発生させる能力を持つ動物も存在する。

「Science」誌6月27日号で発表された研究で、電気を発生させることができる器官が6つの異なるグループの電気魚で進化した過程が解明された。
すべての筋細胞は電位を持っているが、この6グループの魚類では、特定の筋細胞が100万年以上かけて、通常の筋細胞よりずっと高い電圧を生み出す発電細胞(electrocyte)へと進化した。
この特殊な細胞を使い、泥っぽいアマゾン川に生息するこれらの電気魚は、コウモリが超音波を使った反響定位(エコーロケーション)を行うのと同じように、能動的に発した電気を感知して暗闇の中で障害物や他の動物を見つけ出す。

「電気魚は電気を使って周囲の環境を“照らしだし”、周りの水とは電気的特性の異なる物体を感知することができる」とドイツ、ボン大学の神経行動学者ゲアハルト・フォンデルエムデ(Gerhard von der Emde)氏は話す。
電気魚はまた、交配相手を惹きつけたり縄張りを主張する際、電気信号を発して互いにコミュニケーションを取っている。

 しかし電気魚だけが電気を利用する動物ではない。様々な目的のために電気を感知したり発生させる動物は、他にも何種か存在する。

◆ 1. デンキウナギ

 その名前やヘビのような外見とは裏腹に、デンキウナギはウナギとは全く異なる動物で、電気魚の一種だ。他の電気魚と同様に、ほぼ常に低電位のパルスを出し続け、周囲の環境を感じ取っている。
しかしより広く知られている彼らの能力は、獲物を気絶させたり◯すため、または自身の防衛のために非常に高い電圧の電気ショックを与えるというものだ。

 デンキウナギは成長すると、全長2メートル以上、体重20キロ以上にもなる。このサイズのデンキウナギは、600ボルト以上の強烈な電気を発する。アメリカの家庭用コンセントの5倍に当たる電圧だ。

 人間がデンキウナギの電気ショックで死亡する事故は稀だが、実際に起きている。繰り返しショックを受けると、呼吸器不全や心不全を引き起こすおそれがある。
またこれまでに、デンキウナギの電気ショックで失神し溺死した例が複数ある。

続きはソースで

http://headlines.yahoo.co.jp/hl?a=20140627-00000006-natiogeog-sctch
http://amd.c.yimg.jp/im_siggrrrA4aNUU9YTaNu1lll5Mg---x450-y338-q90/amd/20140627-00000006-natiogeog-000-0-view.jpg

Science
Genomic basis for the convergent evolution of electric organs
http://m.sciencemag.org/content/344/6191/1522.abstract?sid=b55b13ec-3592-47f3-95af-90c64645d8a0
~~引用ここまで~~


引用元: 【生物】 デンキウナギなど6つの電気魚で電気を発生する器官の進化過程を解明

デンキウナギなどの電気を発生する器官の進化過程を解明の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
~~引用ここから~~

1: TwilightSparkle ★@\(^o^)/ 2014/05/19(月) 18:16:44.07 ID:???.net
電子は直接見えないのが従来の常識だったが、その振る舞いを日本のグループが世界で初めて直接捉えた。帯電したマウスの坐骨神経の近傍で電子が次第に蓄積する様子を電子線ホログラフィーで電場の乱れとして検出し、その電子集団の移動を可視化することに、東北大学多元物質科学研究所の進藤大輔教授と赤瀬善太郎助教、理化学研究所の会沢真二テクニカルスタッフらが成功した。

「理論で『場が大切だ』と説いたアインシュタインにこそ、このデータを見せたかった」と進藤教授は観察の科学史的な意義を語る。新しい研究分野を開拓し、身の回りのさまざまな電気現象の解明に道を開く大きな成果として注目される。5月12日付の米科学誌 Microscopy and Microanalysis オンライン版に発表した。8月に米国で開かれる顕微鏡国際会議の招待講演でも報告する。

現代の生活は、電子のさまざまな動きや流れを利用している。電子なしに現代社会は成り立たないが、多様な電子の振る舞いは光や音、熱などの発生で間接的に把握しているだけで、直接は見えていない。この壁を破るため、研究グループは、電子の波動性を利用した大型電子顕微鏡の電子線ホログラフィーを使い、電子の動きの可視化を目指した。今回、複雑な生体試料の帯電効果を利用して、電場の乱れを通して、電子が次第に蓄積し、集団的に運動する様子を初めて捉えた。

※記事の一部を引用しました。全文及び参考画像等は下記リンク先で御覧ください。
SciencePortal 掲載日:2014年5月14日
http://scienceportal.jp/news/newsflash_review/newsflash/2014/05/20140514_03.html

東北大学 プレスリリース 2014年5月13日 11:00
http://www.tohoku.ac.jp/japanese/2014/05/press20140513-01.html
詳細(PDF注意)
http://www.tohoku.ac.jp/japanese/newimg/pressimg/tohokuuniv-press_20140513_01.pdf

引用元: 【物理】 ついに見たぞ、電子の蓄積と集団運動 [SciencePortal]

【物理】 ついに見たぞ、電子の蓄積と集団運動 [SciencePortal]の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 白夜φ ★ 2014/02/12(水) 23:22:22.52 ID:???
液晶の電場配向に対する閉じ込め効果を初観測-空間の狭さで液晶の特性が変わるメカニズムを解明-
2014年2月10日 09:00

東北大学原子分子材料科学高等研究機構の栗原和枝教授の研究グループは、独自に開発した共振ずり測定法を駆使し、基板の間の距離約13 nm以下の空間に閉じ込められた液晶は、電場により分子の向きを変えることが出来なくなることを見いだしました。 

液晶ディスプレーは、2枚の基板が液晶分子を挟んでできた素子から構成されており、一定方向に並んでいる(配向している)液晶分子の向きを、電場を用いて変えることで表示を制御しています。
本研究グループでは、基板表面間の距離を連続的に変えながら表面間の液体の特性を高感度に調べることができる共振ずり測定法を独自に開発し、表面間距離をナノメートルレベルで変えながら液晶の配向、およびその電場に対する応答の評価を行いました。

その結果、表面からの距離、或いは表面間の距離がある臨界値以下になると、電場などの外場により分子の向きを制御できなくなることを初めて示しました。
今回の研究成果は、基礎科学としては“閉じ込め効果(固体壁により分子の動きが制限される効果)”の理解につながると期待され、応用面ではディスプレーなどの液晶デバイスの微細化の限界を知る上で非常に重要な成果と言えます。

本研究は、2014年2月7日(英国時間)に英科学誌「Soft Matter」オンライン版に掲載されます。

17

▽記事引用元 東北大学プレスリリース 2014年2月10日 09:00
http://www.tohoku.ac.jp/japanese/2014/02/press20140207-02.html

詳細(プレスリリース本文)
http://www.tohoku.ac.jp/japanese/newimg/pressimg/tohokuuniv-press_20140207_02web.pdf

液晶の電場配向に対する閉じ込め効果を初観測 空間の狭さで液晶の特性が変わるメカニズムを解明/東北大の続きを読む

    このエントリーをはてなブックマークに追加 mixiチェック
1: 伊勢うどんφ ★ 2014/02/25(火) 18:49:11.09 ID:???
これまでで最も高い精度で電子の質量を測定したとするドイツの研究が、19日の英科学誌ネイチャー(Nature)に掲載された。
この成果は、物理学の「標準理論」の実験を進めている科学者にとって役立つツールを提供することになる。

 電子は負の電荷を持つ素粒子。ドイツのハイデルベルク(Heidelberg)にあるマックス・プランク核物理学研究所(Max Planck Institute for Nuclear Physics)のスベン・シュトルム(Sven Sturm)氏率いる研究チームは、静電場と静磁場を用いて荷電粒子を閉じ込めるペニングトラップ装置を使って、電子の質量を測定した。

 研究チームは、すでに質量が判明している炭素原子核とセットになった単一の電子を測定。
質量は、「0.000548579909067原子質量単位」だった。測定の精度は過去の推計と比べて13倍となった。

15

2月24日 AFP
http://www.afpbb.com/articles/-/3008949#blogbtn

Nature
High-precision measurement of the atomic mass of the electron :
http://www.nature.com/nature/journal/vaop/ncurrent/full/nature13026.html

電子の質量は「0.000548579909067原子質量単位」だった…過去最高精度で測定の続きを読む
スポンサーリンク

このページのトップヘ